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Sound waves in a medium containing rigid spheres*

Dov Bai Joseph B. Keller
Department of Computer Science Departments of Mathematics
Stanford University and Mechanical Engineering
Stanford California 94305 Stanford University

Stanford, California 943053

Abstract. The effective speed of sound is calculated for a medium
containing immovable rigid spheres arranged in a simple cubic lattice.
Long waves propagating along a lattice axis are treated. The wave
equation for the pressure is reduced to an ordinary differential equation
to which Floquet theory is applied. Both perturbation and numerical
methods are use to find the effective speed as a function of frequency,

and to locate the pass and stop bands. {/

* Keller’s research was supported by the Office of Naval Research, the Air Force Office
of Scientific Research, and the National Science Foundation. Bai's work was supported
by the Center for Large Scale Scientific Computing at Stanford under the Office of Naval

Research Contract N00014-82-K-0335.
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1. Introduction

The effective speed of sound in a medium containing particles is different from that in
the ambient medium. We calculate it for the idealized case of immovable rigid spheres
with centers arranged in a simple cubic lattice. We assume that the wavelength in the
ambient medium is large compared to the distance between particles. Then the wave
equation for the pressure can be éeduced to an ordinary differential equation with periodic
coeficients. Floquet theory shows that there are pass bands and stop bands along the
frequency axis. We determine them, and the sound speed in the pass bands, by both

analytical and numerical means.

2. Formulation

Let the z-axis be a lattice axis with L the spacing between sphere centers along it, and
let R be the radius of each sphere. A wave of frequency w propagates along this axis.
By the periodicity of the lattice, the wave is symmetric about the planes y = =L/2 and
z = £L/2. Therefore it suffices to determine the wave within the region bounded by these
four planes, which may be thought of as a rigid-walled waveguide of square cross secticn
with spheres placed periodically along its axis. When wL/c is small, where ¢ is the sound
speed in the ambient medium, the wavelength in this medium is large compared to L.
Then the pressure p is practically constant over the cross-section of the waveguide, so we
write it as p(z). .

Under these conditions, p(z) satisfies the long wave equation [L1]
Sz 2 ) lo) \
Pzt TPt kp=0,  k=u/e (211

Here S(z) is the unobstructed cross-sectional area of the guide, given by

o
13
—

S(z) = L? - n(R? - %), Izl < R (
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S{z+ L)=5(z).

In view of (2.2), the ordinary differential equation (2.1, has a periodic coefficient. By

Floquet's theorem it has a solution which satisfies the condition
pz + L) = e'K¥p(x) (2.3)

for some constant K (k) which depends upon k. The complex conjugate p* of p is another
solution which satisfies (2.1) with 1K replaced by —tA™. When A’ is real, (2.3) represents
a wave propagating in the direction of increasing z with wavenumber A". Therefore its
phase velocity is C = w/K and its group velocity is Cy = (dA’/dw)™}. In terms of k these
relations become

C_k Cy _ dk _ (dK\7
c dK —

- = e = aF (2.4
When K is not real p increases or decreases exponentially with z and the wave is called
evanescent or nonpropagating. In this case we say that w and k lie in a stop band, while

. when K is real they lie in a pass band.

Thus our task is to find a solution p of (2.1) and a constant A'(k) such that (2.3)

holds. Instead we shall specify K and seek k(K) and p satisfving (2.1) and (2.3) because
this is a standard eigenvalue problem with eigenvalue k2.

It will be convenient to introduce dimensionless variables with L as the unit of length.
Thus we set z' = z/L, R = R/L, k¥ = kL, K' = KL and §' = S/L? From now on we

will use these variables, omitting the prime.

3. Perturbation expansion

The coefficient of p; in (2.1) is §;/S = 2rz/S for |z] < R and zero for R < [r] < 1/2.
Its maxdmum absolute value 1s 27 R when Kk < (27r)’§, so it is small when R is small.
. Therefore we shall solve the problem by a perturbation expansion, treating S;/S as small.

The results will be valid for R small, although we shall see that they are useful even for

R = 1/2, when adjacent spheres touch one another.
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To proceed we write
p(z) = po(z) + p1(z) + p2(2) + ... (3.1)
k2 = k2 + (k%) + (kP2 +....

A term with subscript j is of jth order in S;/S. Now we substitute (3.1) into (2.1) and

equate terms of each order to obtain

pg + kapo =0, (3.2)
S, 2
+ kipy = ~ <SP0~ (k*)1pos (3.3)
5'
Py + kipz = —§P'1 — (k®)2p0 — 2(k*)1p1. (3.4)

We also find that each p, satisfies (2.3).
By writing po = ¢'¥¢¥ and then using (2.3) to determine ko we find an infinite number

of solutions:

po =% ko=K+2rm, m=0%1,.... ‘ (3.5)

When K is real then ko is real. Before solving (3.3) we multiply it by pj = e™**°% and
integrate the resulting equation from —1/2 to 1/2. After integrating by parts and using
(2.3) we find that the integral of the left side vanishes. Thus the integral of pj times the

right side vanishes, so we can solve it for (k?); and obtain

SR 172 S'(z)
2 —r
(k )1 = lko/ln S(I)d = 0. (36)

Next we proceed in the same way with (3.4) and again the integral of pj times the

left side vanishes. Then the integral of pj times the right side yields

1/2 ) S’
= [ K 22y (37)

Now we solve (3.3) by means of a modified Green's function G(z,y), to be determined

below, and we get
_ 'k 1/2 (y) |koy 3
pi(z) = —ikg G(z,y)=—~ dy. (3.8)
-1/2 S(y )¢ :
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Then we use (3.8) in (3.7) and find

1/2 1/2 S(I) I(y) _
k), = k,/ / e~tRor "5 oy o dr. 39
=ik | | ¢ S@ Vs e

The results (3.5), (3.6) and (3.9) yield the first three terms in the expansion of k°, while
(3.5) and (3.8) yield two terms in the expansion of p(z).

To complete the calculation we must determine G which is defined by
Gee + k3G =68z —y) — RV _1/2<2<1/2 (3.10)

G(1/21 y) = eiKG(_1/2a y)a
G:(1/2,y) = ¢KG.(~1/2,y).

The solution of (3.10) is not unique when kq satisfies (3.5). One solution is

eika(z—y) ‘ e2iK reiko(z—y)
Vg — ikg(y—z) — - < <1/2
Clav= 75" Bike(1 = e3'F) ok, YSTSUE -
etko(y—1) zetko(z=y) 0 (3.11)
- _~12<z<w.
2iko(1 — e2'F) 2iko /2szsy

By using (3.11) for G in (3.8) and (3.9) we can calculate p;(z) and (k?)2.
Instead of (3.11) we shall represent G, in terms of the eigenfunctions (3.5):
. 2 29 -1
Galz,y) = E gl(K+2mm)(z-y) [(K + 27rn> - (K + 27rm) ] . (3.12)
m#n .
Here we have set kg = K + 27n and denoted G by G,.. We shall also denote p; by pn; and
(k?)2 by (k?¥)n2. Then (3.8) yields
. 2 29 -1
pni(z) = —i Z g K+2emizy, [(K +27rn> - (K + 27rm> ] . (3.13)
m#¥n

The matrix elements V,,n are defined by

2 5'(y)
Vam =/ e2rin—mlyg (3.14)
1/2 5(!/) v
3
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3 Similarly (3.9) yields
« (k*)p2 = =(K + 27n) Z (K 4 27m)|Vam2[(K + 27n) — (K +27m)?)7). (3.13)
. m#n
" "
:.: Let us now set n = 0 and simplify (3.15) in the long wavelength case when K is small.
4
:‘.: We obtain !
| ) = 25 Woml [mmr - 4017 (3.16)
" Rz #0 " 2mm? ' | 1
R m
’ The first sum vanishes, so we get
» K?
‘ (k?)oz = ~5 Z Voml?m ™2 + O(K?). (3.17)
I m2>1
D)
.E From (3.5) see that koo = K, while (3.6) yields (k?)g; = 0. We now use these values and
.s (3.17) in (3.1) to get k2. Then we take the square root, divide by K and use (2.4) to write
W, i
C(R) & 1 2 -2 o
\.‘ ——C———=—E=[1—§‘?ZIV0mmlm + . (3.18)
,\‘: - m21
The terms retained on the right side of (3.18) are independent of K, so to this order
B : 1
' C,=C.
‘g‘ We have evaluated Vp,, by numerical integration-with 1 < m < 12, for five values of %
::E R. The results for C(R)/c from (3.18) are
l.'
K C(0.5 C(0.4 C(0.3 C(0.2 )
c03) = 0.87, —(——) = 0.966, c3) = 0.991, (0-2) = 0.999, ¢(0.1) = 1.000.
o c ¢ ¢ ¢ ¢
3 (3.19)
N :
Y These results can be compared with those obtained by direct numerical solution of (2.1)-
- (2.3), which are listed in Table 1. We see that for small K the agreement is good for all
;
o values of R, while for small R the agreement is good for all values of K. In fact since
: Vimn = O(R?), (3.18) shows that C(R)/c = 1 — O(R®), so C(R)/c differs little from unity
‘. for R small. This is in agreement with the values in (3.19) and in Table 1.
"'} The matrix elements V,,, given by (3.14) can be evaluated approximately when R is
f:: ‘ small, which may be useful. First we integrate by parts in (3.14) to get
' R
o Vian = 27i(m — n)/ (log S)e?™(m-—mzqy (3.20)
" -R )
-
2 6
D
>

I",“f’:"’,' TOET Lo b-¥.‘ L ¢ , ol ) Y S () TGN Ly
RN X N 0 b 2L "A"\‘«h‘ ﬂ'* l”d‘ PLy 8 ‘l"‘ 3ol KR 1 R XMX) LX) ‘QJ‘\&"""..’ 4\ A.d.“’"n ‘:l‘..a"‘s"‘\' NN W) ‘ i




In (3.20) we write log S = —f — f2/2 - f*/3 + ... where f(z) = 7(R? — z?), and obtain
R
Van = =27i(m ~ n)/ f(z)e?™(m=mMzdz 4 O(R®). (3.21)
-R

Integration yields, with amn = 27(m - n),

Voo = 4 [

Amn

! in(amaR) — Reos(amnR)| + O(R®). (3.22)

Amn .

From (3.22) we see that when [amnR| < 1 then Vian = a@mav + O(R®) where v = £7R% is
the volume of a single sphere. '

The results (3.13) and (3.15) are not valid when any denominator in them vanishes.
This occurs when K = nr for some integer n. Then kg = n7 and the general solution
of (3.2) satisfying (2.3) is po = 1'% + c,e~%0% where ¢, and ¢, are constants. To find
(k?); we multiply (3.3) by e***o* and integrate from —1/2 to 1/2. The integral of the left
side vanishes yielding two equations:

(k*)1e1 — tkoVipe2 = 0,
(3.23)
tkoVnocs + (k*)1c2 = 0.
For ¢, and ¢; to be non-zero, the determinant of their coefficients must vanish, from which

we get the two solutions

(k) = £ko|Vnol. (3.24)

Since S(z) is symmetric, Vyo is imaginary. Then for (k2); = (k?)] (3.23) yields ¢;/c; = 1
and hence pp = p§ = e'*0%(1+4¢'2™"%). Similarly for (k?); = (k?)7 (3.23) gives ca/c; = —1
and po = py e'o7(1 — e=i27nz),

Next, we calculate p;. We write p; as e'*%y;(z) where v1(z) has period 1 and the
Fourier expansion )_ ame'?™™* where the a,, are constants. To find a; we substitute
p1 = e* (T ame'?™™2) into (3.3), multiply by e~*(*o+2%D and integrate the resulting

equation from —1/2 to 1/2. In this way we obtain

VaEVE ) .
* - —y thor ( m0 n+m.0 W2rmz 3.95)
P = ~thoe'™ 3 o TR (92

m#0,—n




To calculate (k2?); we substitute (3.25) into (3.4), multiply by e~'*¢% and integrate

from —L/2 to L/2. The integral of the left side vanishes and we obtain for K, = »n/L,

n ( 2 n + 2m
()5 = -( > !Vmol £ Y V;+mo> (3.26)
4 o (n+ el (m+n)m
Since Vg = zf 12 s - sin(2rmz)dz we have Voo = Vemo. Also, for m = —(I + n),
%V oViimo = (('::jﬁ VioVn+1,0. Hence the second term in (3.26) vanishes and

(3.26) becomes

k=2 3 n+3m) 2 (3.27)
m#Qfd.—n

We now use the results (3.24) for (Icz)li and (3.27) for (k?)5F in (3.1) for k? with
kg = K = nw. Denoting k by k, we get

. 2m
(E2VE = (n7)? = nxlV n nrem
GF = gVl = 3 3

[Vimol® + - -+ (3.28)

The two positive values k} and & determined by (3.28) are the two boundaries of the n-th
stop band corresponding to K = nr. the width of this band is Ak, = kY -k = [Viol+- - -
This width is 27nv + --- when 27nR is small. The values of 7~'k% and of #~!Ak, are
shown in Table 3, based upon (3.28). The Vo were calculated by numerical integration
for m < 12 for five values of R for the first three bands, n = 1,2,3. The results agree well
with those in Table 2, obtained by numerical solution of the eigenvalue problem (4.1) with

N +1=100.

4. Numerical solutions

To solve the eigenvalue problem (2.1-2.3) numerically we discretize (2.1) on {0 < z < L}
using a uniform grid G*, where h is the meshsize. The resulting second order accurate

conservative discretization scheme for (2.1-2.3) is

Sl+% Sl—%

(Ph, - PN - (P} = PL )+ (k*h)’P =0 (4.1)

S; S,
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Phl = C-ikhLPg_l, P:/ = elKLPOh, S_' — 5§

Here PJ-" is the solution at the gridpoint z, = jh, 5, = S(ak) and .V + 1 is the number of
gridpoints in G*. For any given A there are .V — 1 solutions k" of the eigenvalue problem
(4.1). In our calculations we took L =1 and NV —1 = 100.

In Table 1, the numerical values of k*(R)/K are given for the first two bands. cor-
responding to K/pt in the ranges 0 to 1 and 1 to 2 respectively. We have seen that the
perturbation results (3.19) are in good agreement, with them for A small and also for R
small.

In Table 2, #=}[k2(R)]* is given for n = 1, 2,3 where [k2]¥ are the two values of k" at
the ends of the n-th stop band. For comparison, Table 3 shows the corresponding values of
k given by (3.28), obtained by second order perturbation analysis, which agree well with

the values in Table 2.

5. Conclusion

'Wé have presented two methods for calculating the pressure p(/.r), the phase velocity C and
the proragation constant K for sound waves in a medium containing fixed rigid spheres
arranged in a simple cubic lattice. One is a perturbation expansion in R/L, where R is the
radius of a sphere and L is the distance between centers. The other is a direct numerical
method. The results of the two methods agree well both when R/L is small and also when
KL is small.

The results show that there are pass bands and stop bands along the axis of kL =
wl/c. The boundaries of the first three stop bands are given in Tables 2 and 3 for five
values of R/L. The values of C/c in the first two pass bands are given in Table 1 for
five values of R/L and ten values of KL/n. They show that C/c € 1 1in th‘e first pass
band, and that C/c decreases as R/L increases and as K L increases. In the ,seéénd band

C/c > 1 except near the upper edge of the band. Within this band C/c still decreases as

K L increases, but it increases as R/L increases.
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kK i
K/r[R=01 R=02 R=03 R=04 R=05
0.1 | 1.000 0999 0991 0967  0.889
02 | 1.000 0999 0991 0966 0885 |
03 | 1.000 0.999 0991 0964  0.880
0.4 | 1.000 0.999 0990 0961  0.873
0.5 | 1.000 0.998 0989 0957  0.862
0.6 | 1.000 0.998 . 0987 0951  0.847
0.7 | 1.000 0.998 0984 0940  0.824
08 | 1.000 0997  0.978 0922  0.793
09 | 1.000 0.995 0964 0889  0.747
1.0 | 0996 0970  0.912  0.825  0.686
1.0 | 1.004  1.030  1.091  1.191  1.371
1.1 | 1.000 1.004 1.032  1.106  1.259
1.2 | 1.000 1.001 1017 1.066  1.187
1.3 | 1.000 1.0001 1010  1.045  1.139
1.4 | 1.000 1.000 1.007 . 1.033  1.108
15 | 1.000 1.000 1.005 1.026  1.086
1.6 | 1.000 1.000 1004 1.021  1.070
1.7 | 1.000 1000 1002  1.017  1.052
1.8 | 1.000 0999  1.001  1.014  1.048
1.9 | 0996 0982 0998  1.012  1.039
20 | 0996 0982 0982  1.005  1.018

TABLE 1.

Values of k*/K obtained by numerical solution of the eigenvalue problem
(4.1) with N + 1 = 100 for various values of K and R.
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k

- K/ R=01 R=02 R=03 R=04 R=05

: 7o i(k%)- | 09950 00698 00117 0827  0.607

h 1 | x='(kM* | 1.004 1.0208 1.0907 1.191  1.371

2 7~1Akh | 0.0082 0.0601  0.179  0.366  0.685 -

A 7 T(kh)- | 1.9922 10648 19631 2.0095  2.035

: 2 | xol(kM)* | 2.0068 2.0357  2.046  2.0337  2.116
rTiAKR | 00144  0.0709 0.00828 0.0242  0.081
T (kh)- | 2.990  2.0843  2.0751  2.9975  2.086

g 3 | =-1(k*)* | 3.0076 3.0136 3.0306 3.0245  3.101

- ~-1Ak* | 0.0176 0.0313 0.0555 0027  0.115

TABLE 2.

Boundaries (k*)~ and (k*)* and widths Ak* = (k")* — (k*)~, of the first
three stop bands for five values of R, obtained by numerical solution of
(4.1) with .V +1 =100
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SE

el K/ R=01 R=02 R=03 R=04 R=05

ik 0.9959 0.9698 0.9117 0.827 0.697 l
|

. (2)
' 1 | = 'k% | 1.0041  1.02908 1.0907 1.190  1.366

o ° 1Ak | 0.0082  0.06  0.179- 0363  0.669
~ 7Tk | 19927 19652 19637 20099 2036 |
98 wlkGy | 20072 20361 20462 20341 2116 |
m1Akp | 0.0145  0.0709 04092 00242 0.08 |

A 7 kg, | 2990 29855 2976 29992 2985 |
3.0088 3.0166 3.0314 3.025  3.104 !

|

I 3 71k’
W W-lAk(g) 0.0188 0.0311 0.0554 0.0238 0.119

-
2

(2)

TABLE 3.

¢ Boundaries and widths of the first three stop bands calculated by second
A order perturbation theory, (3.28). Numerical integration was used for cal-
G culating the Vo, and only terms with m < 12 were included.
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